dyyseo

How to Choose the Right Chiller for Your Injection Molding Machine

Choosing the right chiller helps your injection molding work well. You must match cooling power, temperature control, and chiller type to your machine. First, learn what cooling you need and what kind of injection molding machine you have. Look at energy efficiency when you check injection molding chillers. These steps help you save money and keep production running smoothly.

key Takeaways

  • Find out how much heat your machine makes. Add a little extra to be safe. Pick a chiller that can cool enough.

  • Pick the best chiller type for your needs. Air-cooled chillers are easy to set up. Water-cooled chillers work better if you have water.

  • Keep the temperature steady. This helps you make good parts and waste less.

  • Make sure your chiller is the right size. Install it the right way. This helps stop problems and keeps things working well.

  • Talk to experts if you need help. Use tools like calculators to help you pick the best chiller.


Cooling Needs
You need to know how much heat your injection molding machine creates. The heat load tells you how much cooling power you need. When you melt plastic, the machine produces a lot of heat. You must remove this heat quickly to keep the process stable. If you choose a chiller that cannot handle the heat load, your parts may not form right. You can ask your machine supplier for the heat load value. You can also use online calculators to estimate it. Always add a safety margin to your calculation. This helps you avoid problems during peak production.

Machine Size & Cycle Time

The size of your machine and how fast it runs both affect your cooling needs. Large machines need more cooling. Machines with short cycle times also need more cooling because they work faster. If you run many cycles per hour, your chiller must keep up. You should check the tonnage of your machine and the average cycle time. Make a list of all machines if you use more than one. This helps you pick the right injection molding chillers for your setup.

Tip:Write down your machine size and cycle time before you start looking for a chiller. This makes the selection process easier.


Ambient Conditions
The temperature and humidity in your factory change how well your chiller works. Hot or humid air makes it harder for the chiller to cool your machine. If your factory gets very hot in summer, you may need a bigger chiller. You should also think about where you will place the chiller. Some chillers work better indoors, while others work better outside. Always check the chiller’s performance in your local climate.


injection molding chillers

Air-cooled vs.Water-cooled

There are two main types of injection molding chillers. One type is air-cooled. The other type is water-cooled. Air-cooled chillers use fans to move air over coils. This helps take away heat from the machine. You can put air-cooled chillers almost anywhere. They do not need extra water to work. These chillers are good if water is costly or hard to find. Water-cooled chillers use water to get rid of heat. You must have a steady water supply for them. Sometimes, you also need a cooling tower. Water-cooled chillers are usually quieter. They can last longer than air-cooled chillers. They work best in big factories with good water systems.

Tip:Pick air-cooled chillers if you want an easy setup. Choose water-cooled chillers for better efficiency and if you have water.

Central vs. Portable

You can choose central or portableinjection molding chillers. Central chillers cool many machines at the same time. You put them in one place and connect all your machines. This saves space and makes it easier to fix them. Portable chillers can move from one machine to another. Use them if you only need to cool one machine. They are good if you want to move them around.

Hydraulic vs. Electric Machines

The kind of machine you have is important. Hydraulic machines use oil to move their parts. They make more heat than electric machines. These machines need stronger chillers. Electric machines use motors and make less heat. You can use smaller chillers with electric machines. Always match the chiller to your machine type for the best results.

Note: Look at your machine’s manual to see which chiller is best.

Selection Criteria

You need a chiller that can cool your machine enough. Cooling capacity is how much heat the chiller can take away in a certain time. If the chiller is too small, your machine might get too hot. This can make your molded parts turn out wrong. Always check your injection molding machine’s heat load. Add a little extra to be safe during busy times. Most suppliers show cooling capacity in tons or kilowatts. Make sure the chiller meets or goes above what you need.

Tip:Write down your machine’s heat load and compare it to the chiller’s rated capacity before you buy.

Maintenance and Uptime

Taking care of your chiller is important for smooth work. Water-based systems often need less cleaning because they do not get dirty as fast. Easy maintenance means your machines can run longer without stopping. Good chillers have strong parts and smart controls. These help you stop breakdowns and keep your factory working. Your maintenance team should check, clean, and fix the chiller often. This keeps your injection molding chillers working well and cuts down on stops.

Maintenance teams must:

  • Fix chillers fast when there is a problem.
  • Do regular checks to stop problems before they start.
  • Work with operators to solve issues quickly.
  • Follow safety rules and keep good records.
  • Learn about new systems and controls.


Sizing & Installation


Sizing Steps

You need to size your chiller correctly to keep your machines running well. Start by finding the heat load for each machine. Write down the number you get from your machine manual or supplier. Add up the heat loads if you have more than one machine. Always include a safety margin of 10-20% to cover extra heat during busy times.

Follow these steps to size your chiller:

  1. List all machines that need cooling.

  2. Find the heat load for each machine.

  3. Add the heat loads together.

  4. Add a safety margin.

  5. Choose a chiller with a cooling capacity that matches or exceeds your total.


Installation Needs

Proper installation keeps your chiller working well. Place the chiller on a flat, strong surface. Make sure there is enough space around it for air flow and maintenance. Connect all pipes and wires as the manual shows. Use clean water if you have a water-cooled chiller. Check for leaks after you finish.

You should also:

  • Keep the chiller away from dust and heat sources.

  • Make sure power supply matches the chiller’s needs.

  • Train your team on how to use and check the chiller.


It is smart to look at different chillers before you buy. First, check the main features of each one. Look at cooling capacity, temperature control, and condenser type. Make a list of brands that match what you need. You can use a table to keep your notes organized:


BrandA 10 tons ±0.1℃ Air-cooled 2 years
Brand B 12 tons ±0.2℃ Water-cooled 3 years
Brand C 10 tons ±0.1℃ Air-cooled 1 year

Read reviews from other people who use these chillers. Ask if they are reliable and if spare parts are easy to find. This helps you avoid trouble later.


Budget & Quality

You need to think about both price and quality. Do not pick the cheapest chiller if it will not work well. Cheap chillers may break more or use more energy. Good chillers last longer and save money in the long run. Check the warranty and after-sales help. Good support can save you time and stress. Make sure you know the full cost, including setup and care.

Tip:Spending a bit more at first can save money on repairs and energy later.


It is a good idea to talk to experts before you buy. Find people who know about injection molding machines and extra equipment. They should know about chillers, thermolators, and resin dryers. Experts can help you pick the right chiller and plan for care. They can also help if something breaks. Experts often work with maintenance teams to keep things running. They know how to make cycle times better and cut down on waste. This help lets you get the most from your new chiller.

When you ask for expert help, look for:

  • Real experience with the equipment
  • Skill at fixing problems
  • Ability to judge what to buy
  • Teamwork with maintenance and production
  • Ideas for making things work better

You can pick the right chiller by following some easy steps. First, make sure you size the chiller correctly. Keep the temperature steady for good results. Choose a chiller type that fits your machine’s needs. Use a checklist so you do not forget anything. If your project is hard, ask a professional for help.



FAQ

What size chiller do you need for your injection molding machine?
You need a chiller that matches your machine’s heat load. Check your machine manual for the heat load value. Add a safety margin of 10–20%. This helps your chiller handle busy times without problems.

How often should you maintain your chiller?
You should check your chiller every month. Clean filters and inspect for leaks. Schedule a full service at least once a year. Regular care keeps your chiller running well and helps you avoid breakdowns.

Can you use one chiller for multiple machines?
Yes, you can use a central chiller for several machines. Make sure the chiller’s total cooling capacity covers all machines. List each machine’s heat load and add them together before choosing your chiller.

What is the difference between air-cooled and water-cooled chillers?
Air-cooled chillers use fans to remove heat. You do not need extra water. Water-cooled chillers use water and often need a cooling tower. Water-cooled models work better in hot places and usually last longer.

阅读全文......

How to Overcome Industrial Cooling Issues with Air Cooled Screw Chillers

Air cooled screw chillers are a good way to fix cooling problems in factories. These systems work well and can be used in many ways. Many factories pick air cooled chiller units because they are simple to set up. They do not need cooling towers or extra water systems. People often switch to air cooled chillers to save water and need less maintenance. They also help cool bigger areas. These chillers help with energy use, space, and meeting environmental goals.


Key Takeaways

  • Air cooled screw chillers are easy to set up. They do not use much water. They are simple to take care of. This makes them great for many factories.

  • These chillers have screw compressors that work well. They use smart controls to save energy. They help keep the temperature steady.

  • Picking the right chiller size saves money. A modular design helps meet factory needs as they change.

  • Doing regular maintenance is important. Cleaning coils and checking oil keeps chillers working well. This also helps them last longer.

  • Air cooled screw chillers can be changed to fit different needs. They have strong safety features. This makes them good for many industries and places.


Air Cooled Screw Chiller Overview


How It Works

Air cooled screw chillers use a closed refrigeration cycle to take away heat from factory processes. There are four main steps in the system: compression, condensation, expansion, and evaporation. The screw compressor has two spiral rotors that spin together. This design helps the refrigerant get squeezed gently and quietly. Next, the refrigerant goes to the condenser. Fans blow air over copper tubes and aluminum fins. This step lets heat escape into the air. The refrigerant cools down and passes through an expansion valve. This valve lowers the pressure. In the evaporator, the refrigerant takes heat from the process water. This cools the water before the cycle starts again. The OUMAL 30 Ton Air Cooled Screw Chiller uses this process to give steady and dependable cooling for many factories.

  • The system has these parts:

    • Compressor

    • Condenser

    • Evaporator

    • Control system

These parts work together to make a high-efficiency solution for cooling in factories.


Key Features

Feature

Air-Cooled Screw Chiller

Water-Cooled Chiller

Cooling Medium

Uses air around it

Uses water

Cooling Equipment

Fans help get rid of heat

Needs cooling towers

Water Consumption

Uses little water

Uses a lot of water

Installation

Can go outside, easy to set up

Goes inside, harder to set up

Maintenance

Medium, no cooling tower needed

More work, needs water treatment

Efficiency

Works well in many places

Better for very big jobs

The OUMAL air cooled screw chiller has a semi-hermetic screw compressor, a copper condenser, and a shell-and-tube evaporator. It uses a Siemens PLC control system with a touch screen, so it is easy to use. The chiller uses R-407C, which is a refrigerant that is better for the environment. It meets strict rules for the environment. Special safety features help keep the cooling system working well.


Main Applications

Air-cooled chillers are used in many industries that need reliable chillers for cooling. Some common uses are:

  • Plastics factories use them to control mold temperature

  • Electronics factories use them to keep things stable

  • Chemical plants use them to stay safe

  • Food and drink factories use them to cool things fast

  • Medical and drug companies use them for clean rooms

  • Car and printing factories use them to protect machines

These chillers also work well where there is not much water. The OUMAL air cooled chiller can be used with other cooling systems. This makes it a good choice for many factory cooling needs.


System Sizing

30 Ton Air Cooled Screw Chiller

Flexible Capacity

Factories need chillers that can handle many jobs. Sometimes, factories change their machines or add new ones. A modular design lets chillers fit different needs. The OUMAL air cooled screw chiller has a modular design. Users can pick the size and features they want. They do not have to buy a chiller that is too big or too small. This helps save both money and energy.

Capacity control is also very important. The OUMAL process chiller can change its cooling power in steps from 25% to 100%. This means it can match how much cooling is needed at any time. If the factory needs less cooling, the chiller uses less energy. If more cooling is needed, the chiller gives more power. This makes the system work well and stay reliable.

  • Step modulation for capacity control helps:

    • Use less energy when cooling needs are low

    • Make the compressor last longer

    • Keep the temperature steady for sensitive jobs

Some chillers use variable-speed drives. These drives let the compressor and fans change speed smoothly. This gives even better control and saves more energy. Using the right controls can lower electricity use by over 12% in some cases. The OUMAL process chiller uses smart controls to work its best in all situations.


Sizing Tips

Getting the right size chiller is very important. If the chiller is too small, it cannot cool enough. If it is too big, it wastes energy and costs more to run. Here are the main steps to size an air cooled screw chiller:

  1. Find out the total heat load. Add up heat from machines, people, and outside. Think about the temperature and humidity you want.

  2. Look at the type of factory and how many hours it works each day. Check how much heat the equipment makes.

  3. Use this formula: Capacity (Tons) = Total Heat Load (BTUs) / 12,000. This tells you the size you need.

  4. Pick the right chiller type for your job. Screw chillers are best for big factories and tough jobs.

  5. Plan for the future. Think about adding new machines or working longer hours. Do not just look at cost. Efficiency and how well it works over time are most important.

Tip: Always talk to a chiller expert before you decide. OUMAL can make custom chillers for special needs. Their team can help with sizing and design so the chiller fits your job.

Industrial chillers like the OUMAL model can be made to fit each project. This makes sure the system works well and saves energy. Good planning and the right features help factories get the best from their cooling system.


Energy Efficiency



Compressor Technology

Industrial chillers use special screw compressor technology to save energy. The screw compressor has two rotors that spin together. This design makes the compressor quiet and smooth. Many air-cooled chillers use this compressor because it saves power. It also works well in big factories. The compressor can change its speed and power. This helps match how much cooling the plant needs. So, the chiller does not waste energy when less cooling is needed.

  • Screw compressors help chillers by:

    • Keeping the temperature steady and accurate

    • Using less electricity in big buildings and cooling jobs

    • Giving many cooling options for different needs

    • Letting users adjust settings to save more money

Some brands, like Daikin and Trane, use screw compressors with high energy ratings. These compressors help factories use less electricity. The OUMAL air cooled chiller uses a semi-hermetic screw compressor. This type is known for being efficient and working well for a long time.


Smart Controls

Smart controls are important for making chillers work better. Many new chillers use PLC systems and touch screens. These controls let workers set and watch the chiller in real time. The system can change how it works based on cooling needs. This saves energy and keeps the temperature even.

The OUMAL air cooled screw chiller uses a Siemens PLC control system. It has a touch screen that is easy to use. This system lets workers make changes fast and react to factory needs. Smart controls also help keep the system safe. They watch for problems like too much pressure or overload. Workers can see warnings and fix problems before they get worse.

Note: Smart controls and energy systems work together to save energy. They help the chiller run only when needed. This lowers costs and makes the chiller more efficient.


Reducing Costs

Industrial chillers help factories spend less money in many ways. Air-cooled chillers do not need cooling towers or extra water. This means they use less water and need less care. Using eco-friendly refrigerants, like R-407C, is good for the earth. It also helps the chiller work well in hot weather.

Studies show water-cooled chillers use less power than air-cooled chillers. But air-cooled chillers save money because they do not need water treatment or towers. This makes them good for places with little water. The OUMAL air cooled screw chiller uses R-407C. This helps it work well and saves money on water.

Factories that buy variable speed drive air-cooled screw chillers often get their money back in about 22 months. This means energy and care savings pay for the chiller in less than two years. Many factories pick air-cooled chillers to help the planet. These chillers use less material and lower-GWP refrigerants. This helps cut down on carbon emissions.

Tip: Picking the right chiller with smart controls and good compressors helps factories save money, use less energy, and protect the environment.


Maintenance and Reliability



Easy Maintenance

Air cooled screw chillers last a long time in factories. They have fewer moving parts than other chillers. This means they do not break as often. The design lets workers reach important parts easily. Technicians can check and fix things fast. Many factories pick screw chillers for strong cooling and easy care. Screw chillers need fewer repairs than reciprocating chillers. They also cost less to keep working over time. Cleaning the condenser coils and checking oil levels is important. This helps the chiller work well. If something breaks, modular maintenance keeps the chiller running. One part can be fixed while the rest still works. This stops long shutdowns and keeps the factory working.


Aspect

Air-Cooled Screw Chillers

Reciprocating Chillers

Scroll Chillers

Centrifugal Chillers

Moving Parts

Fewer

More

Fewer

Single Compressor

Maintenance Complexity

Easier Access

Higher

Sealed Design

Full Shutdown

Maintenance Costs

Lower Long-Term

Higher

Lower

Higher

Operational Impact

Modular Maintenance

N/A

N/A

Full Downtime


Safety Protections

Modern air cooled screw chillers have many safety features. These features help stop damage and keep the chiller safe. Some main safety features are:

  • High and low pressure protection

  • Compressor overheating protection

  • Overloading protection

  • Flow switch to check water flow

  • Phase sequence and phase-missing protection

  • Exhaust overheating protection

  • Anti-freezing protection

  • Oil separator for proper lubrication

  • Refrigerant safety valve

  • Buzzer alarms for faults

  • Power phase failure protection

  • Coil over-heat protection

  • Temperature auto-switch

  • Refrigerant shortage protection

All these features work together to stop problems early. They also make it easier for workers to fix issues.


Warranty and Support

OUMAL gives a 15-month warranty for its air cooled screw chillers. This is longer than the usual 12 months from other brands. The company has good after-sales support. Customers can get help from trained service teams. They can order spare parts and ask for technical help. OUMAL also lets customers use remote monitoring and gives advice on care. These services help the chiller work well and make customers feel safe.


System Compatibility

Air cooled screw chillers can work with many air conditioning systems in factories. They connect to both new and old systems. Engineers plan how to keep air moving and not stop work. They follow the maker’s guide to fit the chiller with the system. Testing and checking make sure everything works together well. Many factories use these chillers to make their cooling better without big changes. Cleaning filters and looking for leaks helps the system run well.

Tip: Good planning and setup help stop problems when adding chillers to old systems.


Environmental Adaptability

Factories use air conditioning in many places. Air cooled screw chillers can handle hot, cold, or tough spots. They have strong fans and special covers to stop heat and rust. Some chillers work in heat up to 60°C. They use drives that change fan and compressor speed. This saves energy and keeps the temperature steady. The table below shows how these chillers work in different places:


Adaptation Feature

Description

Variable Frequency Drives

Change speed for different loads and weather

Heavy-duty Design

Works in high heat, up to 60°C

Corrosion-resistant Heat Exchangers

Lasts longer in tough or chemical places

Modular Design

Fits in small spaces and is easy to add more

Installation Clearances

Needs space for air and repairs

Environmental Protection

Protects from bad weather and harsh stuff

These features help air conditioning systems in factories work well anywhere.


Customization Options

Each factory needs something different for its air conditioning. Air cooled screw chillers can be changed in many ways. Companies pick the size, cooling power, and temperature they need. Some chillers have special parts to stay safe in risky places. Others cool things to very low temperatures for food or chemicals. Digital controllers help keep the temperature just right. OUMAL lets you use outside water tanks for more choices. Their team helps design chillers for special needs, space, and rules. This makes sure the cooling system fits and works well with air conditioning in factories.



阅读全文......

Improve Efficiency and Product Quality The Power of OUMAL Industrial Chillers

In today’s fast-paced manufacturing industry, companies are constantly looking for ways to increase efficiency, reduce costs and improve product quality. The choice of industrial cooling equipment is a critical factor in achieving these goals, but it is often overlooked. OUMAL Refrigeration Machinery Co., Ltd. leads the way in this field with its development and manufacture of innovative heat transfer products, such as 30 ton air-cooled chillers and 20 ton air-cooled chillers, designed to meet the unique cooling needs of a wide range of industries around the world.


Improve Efficiency with Cooling Solutions from OUMAL

OUMAL understands the needs of industries such as injection molding, thermoforming, blow molding, blown film production, plastic extrusion and compounding. For each application, the right cooling system is critical. By providing energy-efficient process cooling, OUMAL’s chillers not only ensure optimal temperatures, but also improve product quality and reduce production time. Whether you are producing high-quality plastic parts or ensuring a stable mix of composite materials, OUMAL’s chillers provide reliable and precise support for your production process.


Customized Solutions for Every Need

Flexibility is at the heart of OUMAL’s mission. OUMAL focuses on customer satisfaction and offers a wide range of customization options, and its 30 ton air-cooled chiller and 20 ton air-cooled chiller are just the beginning. OUMAL’s manufacturing facility is fully equipped to produce high-quality products and offers a wide range of modifications and options. Whether you need a system with unique specifications or a modification to your specific application, OUMAL has you covered.


In addition to improving productivity, OUMAL chillers are designed with energy efficiency in mind. With energy costs rising, investing in a high-quality, energy-efficient chiller is a smart move for long-term profitability. OUMAL’s products help companies reduce operating costs while maintaining the high performance required for critical industrial applications.

industrial cooling solution


OUMAL’s commitment to innovation, customer-centric solutions and flexibility sets it apart in the industry. Over the years, their sales and application support teams have developed a deep understanding of the needs of a wide range of industries and can provide expert advice for almost any application. Whether you want to optimize your injection molding process or increase the efficiency of thermoforming, the OUMAL team is ready to recommend the most suitable chiller to meet your needs.


When it comes to industrial cooling solutions, OUMAL Refrigeration Machinery Co., Ltd. is your trusted and innovative partner. Its Air-Cooled Chillers series, including 30 ton Air-Cooled Chillers and 20 ton Air-Cooled Chillers, provide the efficiency, customization, and performance you need to take your business to the next level. With OUMAL, you are investing in more than just a product, but a solution that can shorten production time, reduce costs, and improve the overall quality of your products.


Choose OUMAL as your next industrial cooling solution and experience the difference that innovative, energy-saving technology can make.


阅读全文......

Troubleshooting Water Cooled Screw Chillers Common Faults and Fixes

Troubleshooting Water Cooled Screw Chillers: Common Faults and Fixes

You might have high-pressure trips, refrigerant leaks, or compressor overload when using a water cooled screw chiller. Fast troubleshooting helps lower downtime and expensive repairs. Regular checks and preventive maintenance help find problems early. Knowing your water cooled chiller well helps you see issues before they get worse.


Water Cooled Screw Chiller Faults

140 HP Water Cooled Screw Chiller

  • High Pressure

High pressure alarms can happen in your water cooled screw chiller. Air or other gases in the system can cause this. Too much refrigerant or a dirty condenser can also be the reason. If the cooling water is too warm, pressure goes up fast. Low water flow makes pressure rise too. Dirt in pipes or a broken water pump can cause high pressure faults. To fix these, clean the condenser and check water flow. Adjust the refrigerant level if needed.

Tip:If you see high pressure, always look for dirt on the condenser surface.

  • Low Pressure

Low pressure is another problem you might see. This can happen if there is not enough refrigerant or if there is a leak. Cold weather can make water and oil colder, causing low pressure alarms. Blocked filters or pipes can also lead to this. A bad expansion valve or electrical relay can be the cause too. Check for leaks and clean the filters. Make sure all valves are working right.

  • Water Flow Loss

Water flow loss is a common fault in water cooled chillers. This happens if the water pump stops or pipes get blocked. Air in the system can also cause it. Low water flow can make the chiller shut down or work poorly. Always check pumps and pipes for blockages or leaks.

  • Refrigerant Leaks

Refrigerant leaks are serious in water cooled screw chillers. Leaks make cooling worse and use more energy. Some refrigerants can hurt the environment if they escape. Check for leaks often and fix them fast. This helps avoid high costs and protects the environment.

  • Oil System Issues

Oil system issues can harm your chiller. Oil leaks, dirty oil, low oil pressure, or hot oil are common faults. These problems lower lubrication and can make the compressor overheat or wear out. Check oil levels often and change oil when needed. Clean or replace oil filters as well.

  • Electrical Problems

Electrical problems often cause chiller faults. Loose wires, bad relays, or blown fuses can stop the chiller. If your chiller will not start, check the electrical panel first. Make sure all wires are tight and replace any broken parts.

  • Noise and Vibration

Strange noises or vibration can mean mechanical problems. Loose screws, unbalanced fans, or pipes not fixed well can cause rattling or banging. If you hear loud or repeating noises, look for loose parts or debris. Finding these problems early helps stop bigger faults and keeps your chiller working well.


Fault Type

Common Causes of Chiller Problems

Quick Fixes

High Pressure

Dirty condenser, low water flow, air

Clean condenser, check water flow

Low Pressure

Leaks, blockages, cold water

Fix leaks, clean filters

Water Flow Loss

Pump failure, pipe blockage

Inspect pumps, clear blockages

Refrigerant Leaks

Damaged pipes, loose fittings

Repair leaks, recharge refrigerant

Oil System Issues

Low oil, dirty oil, leaks

Change oil, fix leaks

Electrical Problems

Loose wires, bad relays, blown fuses

Tighten wires, replace parts

Noise and Vibration

Loose parts, unbalanced fans, bad mounts

Tighten, balance, secure parts


Chiller Troubleshooting Steps



Troubleshoot Pressure Issues

Pressure problems in your chiller can cause shutdowns or poor cooling. You can follow these steps to find and fix pressure faults:

  1. Check all valves. Make sure refrigerant valves are open. Isolation valves should stay closed unless you need them for repairs.

  2. Look at the water flow. The water pumps must run well. Both the condenser and evaporator need enough water flow to keep the chiller cool.

  3. Inspect the condenser coils. Dirt or debris can block heat transfer and raise pressure.

  4. Watch the condenser fan. The fan should spin in the right direction and work without stopping.

  5. Use the chiller manual. Find alarm codes and follow the troubleshooting methods listed.

  6. If you see high pressure alarms, check for air or non-condensable gases in the system.

  7. Ask a qualified technician to test high pressure switches, contactors, and relays if you cannot find the problem.

Tip:Clean the condenser coils often. This simple step prevents many pressure issues.


Troubleshoot Water Flow

Water flow problems can stop your chiller or make it noisy. Use these troubleshooting methods to restore proper flow:

  1. Read all safety instructions before you start.

  2. Unplug the chiller and drain the water. Remove hoses and tilt the unit to empty it.

  3. Take out the cartridge filter. Soak it in water for two minutes, then put it back.

  4. Check every hose and fitting for air leaks. Use Teflon tape and tighten clamps to stop air from getting in.

  5. Prime the system. Disconnect the water inlet hose, lift it up, and pour water until no bubbles come out of the outlet.

  6. Start the chiller for one minute. Watch for steady water flow and no bubbles. Repeat priming if needed.

  7. You can flush the system with a garden hose to clear air pockets.


Problem

Possible Cause

Recommended Solution

Low water flow

Dirty or clogged filter

Clean or replace the filter

Low water flow

Air lock

Repeat priming steps

Chiller making noise

Air in water line

Check hoses and prime again

Note:Always keep the water level above the inlet and outlet ports. Clean filters and pipes often to avoid clogs.


Troubleshoot Refrigerant Problems

Refrigerant faults can cause poor cooling or strange noises. Follow these troubleshooting methods to find the cause:

  1. Watch for signs like weak cooling, ice on coils, or odd sounds.

  2. Look for leaks or airflow problems around the chiller.

  3. Use manifold gauges to check refrigerant pressures.

  4. Test for leaks with an electronic detector or UV dye.

  5. Inspect the expansion valve for blockages. Make sure superheat settings are correct.

  6. Check the evaporator coil for dirt or ice. Good airflow is important.

  7. Look at the filter drier and pipes for restrictions.

  8. Measure suction and discharge pressures at the compressor. Listen for odd noises.

  9. Check sensor readings. Replace or calibrate sensors if they are wrong.

  10. Do regular maintenance. Clean coils and filters, and check for leaks often.

Safety Alert:Always use the right recovery cylinder for each refrigerant type. Never overfill cylinders. Use EPA-certified tools and keep records of all refrigerant handling.


Troubleshoot Electrical Issues

If your chiller cannot start or stops working, electrical faults may be the cause. Try these troubleshooting methods:

  • Open the electrical panel and look for loose wires or burned parts.

  • Check all relays, fuses, and contactors. Replace any that look damaged.

  • Make sure the power supply is correct and all phases are connected.

  • Use a multimeter to test voltage and current at key points.

  • If you find a problem you cannot fix, call a licensed electrician.

Tip:Always close the electrical panel after checks to keep dust and moisture out.


Troubleshoot Noise and Vibration

Strange noises or shaking can mean loose or broken parts. Use these steps to troubleshoot:

  • Listen for rattling, banging, or humming sounds.

  • Check all screws, bolts, and mounts. Tighten any that are loose.

  • Inspect fans and pumps for balance. Replace or repair if needed.

  • Look at pipes and hoses. Secure them to stop vibration.

  • If noise continues, ask a technician to check for deeper mechanical issues.


Chiller Troubleshooting Checklist

You can use this checklist for quick chiller troubleshooting. It helps you spot problems early and decide when to call a professional.

  1. Inspect the mechanical room. Keep it clean and safe.

  2. Check the electrical panel. Make sure it is closed and dry.

  3. Look at all pipes for leaks or corrosion.

  4. Read temperature gauges. Compare setpoint, return, supply, and condenser water temperatures.

  5. Watch the chiller run. It should not short cycle or make loud noises.

  6. Test water quality. Look for rust or scale.

  7. Check oil pressure and temperature. Look for oil leaks.

  8. Make sure all wiring is tight and fuses are good.

  9. Use the chiller’s fault codes and self-diagnosis features.

  10. If you find leaks, slow cooling, or loud noise that you cannot fix, call a professional.

Remember:Regular chiller troubleshooting and maintenance keep your water cooled screw chiller running longer and more efficiently.

You can keep your chiller working well with regular care.

  • Cleaning filters and checking water flow help stop chiller problems.

  • Checking fan motors and sensors often helps avoid big repairs.

  • Running tests makes sure your chiller works well.


Maintenance Activity

Approximate Cost

Energy/Operational Savings

Tube Cleaning

$5,000

Saves more than $15,000 on energy each year

Compressor Overhaul

$20,000

Stops $50,000 in lost work time

Taking care of your chiller saves money and helps it last longer. Always use the troubleshooting checklist when you find a problem. If you cannot fix the chiller, call an expert. Regular care and checks help protect your chiller.


阅读全文......

What Sets 10 HP Process Chillers Apart for Industrial Metal Finishing

10 HP process chillers are special in metal finishing. They give very accurate temperature control and work well every time. Good chillers help keep metal finishing steady. This stops cracks, warping, and other problems. Studies show that controlling temperature makes metal harder and stronger. It also helps the metal bend without breaking. It uses less energy and saves money too. A good industrial process chiller keeps the workplace the same all the time. This makes every finished product better and more exact. Companies use these chillers for tough jobs and to work fast.


Energy-efficient Process Chillers

Key Takeaways

  • 10 HP process chillers keep metal finishing cool and steady. This stops cracks, warping, and weak metal from happening. These chillers have strong parts like stainless steel tanks and copper coils. These parts help them last a long time and work well. Microcomputer controls keep the temperature just right. This makes products better and saves energy. They do not need much maintenance. They have safety features to protect machines and stop breakdowns. 10 HP chillers are flexible and save energy. They are easy to move and good for many metal finishing jobs.


10 HP Chiller Features

A process chiller is a machine that cools things down in factories. The OUMAL OMC-10A 10 HP chiller is great for metal finishing. It uses air-to-water cooling and has a copper coil that is strong. The tank is made of stainless steel, so it does not rust and keeps water clean. Workers can use the microcomputer control panel to set and check the temperature. This chiller keeps the temperature steady, which is very important for metal finishing.

Note: The OMC-10A model uses good parts like Schneider electrical components. These parts help the chiller stay safe and work well.

The table below lists the main features of 10 HP process chillers used for metal finishing:

Feature Category

Details / Examples

Compressor

Air-cooled scroll compressors (Copeland, Panasonic)

Refrigerants

R22, R407C, R134A, R404A

Heat Exchanger / Tank

Stainless steel water tanks, shell and tube heat exchangers

Water Pump

Durable, corrosion-resistant pumps

Electrical Components

Schneider for stability and safety

Safety Devices

Overheat, high/low pressure, phase protection, anti-freeze

Condenser Type

Air-cooled finned condensers

Temperature Control

Microcomputer control, precise regulation

Portability

Casters for mobility

Copper coils and stainless steel tanks help the chiller last a long time. These materials stop rust and keep the chiller working well. The OMC-10A chiller can cool with 27 kW (7.7 tons), which fits many metal finishing jobs. It uses about 9.2 kW of power, so it is good for saving energy and cooling.


Bar chart comparing cooling capacity and input power for OUMAL OMC series chillers

How Process Chillers Work

Process chillers use a simple cycle to cool things down. First, the refrigerant goes into the evaporator. It takes heat from the process fluid, like the liquid used in metal finishing. The refrigerant turns into a gas. The compressor pushes this gas to a higher pressure and temperature. Then, the gas goes to the condenser. In air-cooled chillers, the condenser lets out the heat into the air, and the gas turns back into a liquid. The liquid goes through an expansion valve, which makes it cooler and lowers the pressure. The cycle starts again.

  1. The refrigerant takes heat from the process fluid in the evaporator.

  2. The compressor makes the refrigerant gas hotter and under more pressure.

  3. The condenser lets out heat to the air, turning the gas into a liquid.

  4. The expansion valve cools the liquid, and the cycle repeats.

Microcomputer controls help keep the temperature steady. They let the chiller keep the water temperature close to the same, usually within ±1°C. This is important for process chillers in metal finishing. The OMC-10A chiller uses these controls to keep things safe and make sure the results are good.


Metal Finishing Cooling Needs

Metal Finishing Cooling Needs

Temperature Control Challenges

Keeping things cool is very important in metal finishing. Jobs like anodizing, plating, and quenching need steady temperatures. If the temperature changes a lot, metal can bend or break. It might also get weaker. Workers have some problems when they try to keep the right temperature:

  • Some materials, like plastics or MDF panels, can bubble or crack if they get too hot.

  • Certain parts must stay within a set temperature. If it gets too hot, these parts can bend or break.

  • Some parts, like refrigerant compressors, need careful heating and cooling.

  • Metal parts with different thicknesses can heat up unevenly. This makes it hard to keep the whole part at the right temperature.

  • Big, heavy parts need more heat to process. This can slow down work and cost more money.

A chiller helps by keeping the temperature steady. The 10 HP chiller uses sensors to check for temperature changes during busy times. If the temperature goes up, the chiller sends coolant through heat exchangers to cool things down. When the temperature is right, the system stops sending coolant. This automatic control keeps everything safe and working well.


Application Examples

Keeping the temperature steady helps protect products and machines. Here are some ways bad temperature control can hurt metal finishing:

  1. If the temperature changes, metal can get bigger or smaller. This can cause size mistakes.

  2. High heat can change the metal’s surface or inside. The metal can get softer or weaker.

  3. Too much heat can burn or discolor the metal. It can also cause other surface problems.

  4. Hot conditions can wear out tools faster. Grinding wheels can get damaged too.

  5. Bad temperature control can leave stress in the metal. This can make it bend or break later.

A 10 HP chiller gives the cooling needed to stop these problems. By keeping the temperature in a small range, the chiller helps each job go well. This means better products, less stopping, and longer machine life. Good chillers also help make more products. They help every finished product meet high standards.


Benefits of 10 HP Chillers

Benefits of 10 HP Chillers

Efficiency and Reliability

10 HP chillers save energy and work well in metal finishing. They have special compressors that change speed when needed. This helps keep the temperature steady and uses less energy. Many factories say their energy use drops a lot after using these chillers. The system now uses only about one-third of the energy older chillers used. The pumps also use less power, so more energy is saved.

Factories have fewer problems because the chiller keeps water temperature and pressure steady. This helps protect machines and makes products better.

Chillers with variable-speed compressors do not turn on and off too quickly. This means less stress on the compressor and it lasts longer. Electronic safety features help stop problems before they happen. Soft-start controls help the system start gently and protect the parts. These things make the chiller good for busy factories.

These chillers are small and fit well in crowded places. Wheels make it easy to move them around. The system uses closed water loops, so the water stays clean and needs less care.


Key reliability features include:

  • Steady temperature for better results

  • Fewer breakdowns because of safety features

  • Less waiting because setup is fast and easy

  • Energy-saving choices that cost less to run


Low Maintenance

10 HP chillers need less care than old ones. Most need a check-up once a year. This means checking oil, cleaning coils, and looking at wires. Trained workers should look for leaks and test safety parts. You do not need to change the oil often, but checking it helps keep the compressor healthy.

Typical maintenance steps:

  1. Do all weekly and monthly checks during the yearly service.

  2. Check the oil for water and acid.

  3. Look at and tighten all wires.

  4. Clean and paint any rusty spots.

  5. Clean air filters and coils.

New chillers use safe refrigerants that last longer. Better motors and coils help stop breakdowns. Chillers that are the right size do not have as many problems. This means less fixing and less time when the chiller is not working.

Many factories say they spend 80% less time on maintenance with new chillers. They also need outside help much less. Having spare parts and regular checks helps stop long waits for repairs.

Safety features keep the chiller and factory safe. Some of these are:

  • Protection from too much electric current

  • Switches for high and low pressure

  • Timers for safety delays

  • Power phase protection

  • Anti-freeze protection

These features help the chiller work well and stop big problems. This means the system is efficient, works well, and lasts a long time for metal finishing.


Industrial Process Chiller Comparison

Industrial Process Chiller Comparison

10 HP vs. Other Capacities

Picking the right process chiller depends on what the factory needs. A 10 HP chiller gives good cooling and saves energy. Smaller chillers, like 3 HP or 5 HP, are for easy jobs or small tanks. They use less power but can’t cool big jobs. Bigger chillers, like 20 HP or 30 HP, cool more and fit large factories. These are best when many machines run at once.

A 10 HP chiller is good for medium or big metal finishing work. It cools enough for jobs like anodizing, plating, and quenching. This size works well without wasting energy. Many companies pick 10 HP chillers because they are flexible. They can cool more than one machine or tank at the same time. This makes them a smart pick for businesses that want to grow.

Tip: You can change some parts to fit your job. Pick different refrigerants, evaporators, or power supplies. Stainless steel tanks and pumps stop rust and last longer. Touch screens and safety features make it easy and safe to use.


Air to Water vs. Other Types

Factories can choose air-to-water, air-to-air, or water-to-water chillers. Each type works best for certain jobs. The table below shows how air-cooled and water-cooled chillers are different:

Feature

Air-Cooled (Air-to-Air)

Water-Cooled (Water-to-Water)

Cooling Power

Lower, changes with air temp

Higher, steady in all weather

Energy Efficiency

0.8–1.2 kW/ton

0.45–0.64 kW/ton

Lifespan

15–20 years

20–30 years

Maintenance

Easy, not needed often

Needs water checks, more work

Installation

Small, easy to move

Needs cooling tower, more space

Performance

Drops in hot weather

Stays strong in high heat

Air-to-water chillers use air around them to cool down. They are simple to set up and move. These chillers work best in places that are not too hot. Water-cooled chillers use water from a cooling tower. They cool better and save more energy, even when it is hot outside. Their cooling stays the same even if the weather gets warmer.

Factories can add special features to chillers for their needs. Some options are titanium tube evaporators, very low temperature settings, and smart controls. These help the chiller work for any metal finishing job and keep the system running well.


10 HP process chillers are special in metal finishing for many reasons.

  • They use scroll compressors and eco-friendly refrigerants to save energy. These parts also help the environment.

  • The air-cooled design uses aluminum fin condensers. This gives strong cooling and does not need extra water systems.

  • Stainless steel tanks and good temperature controls keep things safe and steady.

  • These chillers work for many jobs, like anodizing and die casting. They are easy to set up and do not need much care.

Experts say it is best to pick chillers that fit your cooling needs. They should have good parts and strong support after you buy them. Companies that choose the right chiller get better products. Their machines last longer and work better.


FAQ

What makes a 10 HP process chiller ideal for metal finishing?

A 10 HP process chiller gives strong cooling for metal finishing. It keeps the temperature steady so metal does not get ruined. This helps stop mistakes and keeps machines safe. Many factories pick this size because it is powerful and saves energy.

How does the OUMAL OMC-10A chiller ensure temperature stability?

The OUMAL OMC-10A has a microcomputer control panel. This panel checks the temperature and changes it fast. It keeps the water temperature close to the same, between ±0.5°C and ±2°C.

Can a 10 HP chiller handle multiple metal finishing machines?

A 10 HP chiller can cool more than one machine or tank. Its strong cooling helps with many metal finishing jobs. Many companies use one chiller for several tasks at once.

What safety features do 10 HP process chillers include?

These chillers have safety features to stop problems. They protect the compressor from getting too hot. They also have over-current and phase protection. These features help keep the chiller safe and working well.

Are 10 HP process chillers easy to move and install?

Most 10 HP chillers are small and have wheels. Workers can move them without trouble. The setup is easy, so it does not take long to install.


阅读全文......

Which Is Better for Your Facility Water Cooled Screw Chiller or Air Cooled Chiller

Which Is Better for Your Facility Water Cooled Screw Chiller or Air Cooled Chiller


You usually pick a water cooled screw chiller for big places or places that need to be quiet. Air cooled chillers are good for smaller places, places with little space, or where there is not much water.


Factor

Water Cooled Screw Chiller

Air Cooled Chiller

Efficiency

High

Moderate

Cost

Higher

Lower

Maintenance

More

Less

Climate Suitability

Any climate

Mild climates

Space

Needs mechanical room

Needs outdoor space

Noise

Quiet

Louder

Lifespan

Long

Shorter

Every place is different. Think about your space, money, and weather before you choose.


Key Takeaways

  • Water cooled screw chillers use less energy. They are quieter and last longer. These chillers work well in big buildings. They are good for places that are very hot.

  • Air cooled chillers cost less at first. They do not need much care. They fit in small spaces. They are good where there is not much water. But they are louder. They do not work as well in hot weather.

  • Pick your chiller by looking at your building size. Think about the weather and how much water you have. Also, check your budget. This helps you get the best cooling and save money.


How They Work

Water Cooled Screw Type Integrated Chiller machine

Water Cooled Screw Chiller

A water cooled screw chiller gives strong cooling for big places. It takes heat from your building and puts it into water. The water goes through pipes to a cooling tower. The cooling tower lets the heat out into the air. You find these chillers in hospitals, factories, and big offices. They are good for places that need a lot of cooling. Groups like ASHRAE 90.1 and ARI say these chillers work well for big jobs and save energy. New models use special drives and better refrigerants. This helps save more energy and follow strict rules.


Air Cooled Chiller

An air cooled chiller is good if you want something simple. It uses fans to blow air over coils to cool the refrigerant. The heat goes straight into the outside air. You do not need a cooling tower or extra water. These chillers are good for small buildings or places with little water. They are easier to put in and take care of. But they might use more energy, especially when it is hot outside.


Main Differences

The biggest difference is how each system gets rid of heat. Water cooled screw chillers use water and cooling towers. Air cooled chillers use air and fans.


Here is a quick look at how they work:

Metric / Parameter

Water Cooled (Underground Heat Exchanger)

Air Cooled / Conventional Systems

Energy Consumption Reduction

14% less than water-cooled with cooling tower

Baseline (uses more energy)

Water Consumption

No water used (0 m³/m²/day)

About 1.95 m³/m²/day water used

COP Increase

6% to 18% higher in ground source heat pump systems

Baseline COP

Heat Transfer Enhancement

Up to 1.5 times better

Baseline heat transfer

A water cooled screw chiller gives better efficiency and heat transfer. Air cooled chillers are easier to set up and cost less at first. But they may not work as well in big or busy places.


Comparison Factors


Energy Efficiency

You want to use less energy and save money. Water cooled screw chillers are usually more efficient. They use water to move heat, which works better than air. Studies show that if you run chillers together in a smart way, you can cool up to 93 kW more each hour. This saves a lot of energy over time. In big buildings, smart controls help cut energy use by over 11%. They also make the Coefficient of Performance (COP) go up by more than 21%. This means your system does more work for each unit of electricity. Air cooled chillers can save energy too if they have variable-speed fans and smart controls. But they are not as efficient as water cooled chillers, especially when it is hot outside.


Costs

You need to think about both the starting cost and the cost to keep it running. Water cooled screw chillers cost more to put in. You need a cooling tower, pumps, and extra pipes. The base cost is about $1,000 for each ton of cooling. Air cooled chillers cost less to install because they do not need extra water systems. But they may use more electricity, especially in hot or dry places. Here is a quick look at cost factors:

Parameter

Water Cooled Screw Chiller

Air Cooled Chiller

Installation Cost

Higher (cooling tower, piping)

Lower (no cooling tower needed)

Operating Cost

Lower (better efficiency)

Higher (less efficient in heat)

Water Use

High

None

Maintenance Cost

Higher (more parts to service)

Lower (simpler system)

In places with little water or very hot weather, cooling costs can go up by 60%. You might also pay more for water in some areas.


Maintenance

You want a system that is easy to take care of. Water cooled screw chillers need more work. You have to check the cooling tower and clean the pipes. You also need to watch for scale or rust. These systems have more moving parts. Air cooled chillers are simpler. You just clean the coils and check the fans. This means less downtime and fewer repairs. If you want less work, air cooled chillers are easier to handle.


Capacity

If your building needs a lot of cooling, water cooled screw chillers are better. They can handle big loads and work well in hospitals, factories, or tall office buildings. They can run for long hours without losing power. Air cooled chillers are good for smaller buildings or places that do not need as much cooling. They may not work as well if you try to cool a big space or run them all day.


Climate Suitability

The weather where you live matters. Water cooled screw chillers work well in any climate, even if it is hot or humid. They do not lose much efficiency when it gets hot outside. Air cooled chillers work best in places that are not too hot. When it is hot, they use more electricity and do not cool as well. Studies show that in Mediterranean climates, smart fan controls can save up to 12% on electricity. In subtropical areas, advanced controls help air cooled chillers save energy. But water cooled chillers still work better in high heat.

Chiller Type

Best Climate

Key Performance Notes

Water cooled screw chiller

Any (hot, humid, dry)

Keeps high efficiency in all conditions

Air cooled chiller

Mild, not too hot

Efficiency drops in high heat; best with smart controls


Space and Noise

You need to plan where to put your chiller. Water cooled screw chillers need a mechanical room and space for a cooling tower. They run quietly, which is good for hospitals or offices where noise matters. Air cooled chillers go outside. They need open space and make more noise because of their fans and compressors. If you do not have much indoor space or do not mind noise, air cooled chillers may work for you.


Lifespan

You want your chiller to last a long time. Water cooled screw chillers usually last longer—often 20 to 30 years—if you take care of them. Their parts wear out slowly because they run in steady conditions. Air cooled chillers last about 15 to 20 years. Weather and temperature changes can make them wear out faster.

If you want a quiet, long-lasting, and efficient system for a big building, water cooled screw chillers are often best. For smaller spaces or places with little water, air cooled chillers are simpler and cost less.


Pros and Cons

Water Cooled Screw Chiller

A water cooled screw chiller gives strong cooling. It works well for big buildings or places needing steady cooling. This system saves energy, so you pay less over time. These chillers are quiet, so they fit in hospitals, hotels, or offices where noise is a problem. If you take care of it, it will last longer.

Tip: You must have a mechanical room and a cooling tower. Make sure you have enough space and water for this system.

Pros:

  • High energy efficiency

  • Quiet operation

  • Handles large cooling loads

  • Long lifespan

Cons:

  • Higher installation cost

  • Needs regular maintenance

  • Requires water and extra space


Air Cooled Chiller

Pick an air cooled chiller if you want something simple. This system does not need a cooling tower or much indoor space. You can put it outside, so you save room inside. You spend less money to install and take care of it. This chiller is best for small buildings or places with little water.

Note: Air cooled chillers can be loud. They may not cool well when it is very hot.

Pros:

  • Lower upfront cost

  • Simple installation

  • Less maintenance

  • No water needed

Cons:

  • Louder operation

  • Lower energy efficiency

  • Shorter lifespan

  • Not ideal for large cooling needs


Decision Guide

Facility Size

You need to pick a chiller that fits your building. Big buildings, like data centers or factories, need more cooling. Small offices or stores do not need as much. You can use cooling load numbers to help you choose:

Facility Type

Cooling Load Benchmark (ft² per refrigeration tonne)

Data Rooms

80 - 100

Clean Rooms

100 - 300

If your building is large or needs lots of cooling, think about a water cooled screw chiller. These chillers work well for big jobs and save energy when running hard. For small spaces, an air cooled chiller is usually better and cheaper to run.

Tip: Chillers work best at 40-60% of their top power. If your chiller is too big or too small, you waste energy and money.


Climate and Water

Where you live and how much water you have matter a lot. Hot weather makes chillers work harder. Humid air means you need more cooling. If you live where it is hot or humid, a water cooled screw chiller keeps working well. In dry places or where water is hard to get, air cooled chillers or adiabatic cooling systems use up to 90% less water than old cooling towers.

  • Ambient temperature: Hotter weather uses more energy.

  • Relative humidity: More humidity means you need more cooling.

  • Water availability: If water is low, air cooled chillers are better.

Smart technology, like IoT monitoring, helps you watch water, temperature, and energy use. This makes it easier to change your system for the best results.


Budget

You need to think about your money and your cooling needs. The cost to buy, run, and fix your chiller all matter. Here is a quick look at new market numbers:

Aspect

2023 Value (USD)

Projected 2032 Value (USD)

CAGR / Notes

Total Chiller Control Panel Market

1.2 billion

Growing at 5% CAGR

Demand for energy-efficient HVAC

Standard Control Panels

966 million

1.5 billion

Affordable and functional

Medium Capacity Panels (50-300 tons)

684 million

Over 1 billion

Good for many facility sizes

Energy Savings from AI Systems

N/A

Up to 30% reduction

AI-powered controls cut energy use


Newer chillers with AI controls can use up to 30% less energy. Cloud monitoring helps you save money by making your chiller work better and break down less. If you do not have much money, an air cooled chiller costs less to buy and fix. If you want to save money in the long run, a water cooled screw chiller with smart controls can lower your bills over time.


Pick a water cooled screw chiller if your building is big and needs lots of cooling. Air cooled chillers are better for small places. Think about what your building needs and look at the features. Talk to an HVAC expert for help. This way, you can choose the best chiller for good, steady cooling.


FAQ

What is the main difference between water cooled and air cooled chillers?

Water cooled chillers use water and a cooling tower to remove heat. Air cooled chillers use fans and outside air to cool your building.

How often should you maintain your chiller?

You should check your chiller every month. Clean coils, check water quality, and inspect moving parts to keep your system running well.

Can you use an air cooled chiller for a large building?

  • You can use an air cooled chiller for a large building, but it may not cool as efficiently as a water cooled system.

  • Water cooled chillers work better for high-demand spaces.

阅读全文......

From Packaging to Production How Can Coil-Grooved and Valve-Grooved Packaging Equipment Help You Reduce Costs and Increase Efficiency?

Across the entire industrial packaging supply chain, choosing the right packaging format is fundamental, while effectively leveraging intelligent equipment is key to boosting competitiveness. Whether it's flexible and economical coil-grooved bags or efficient and airtight valve-grooved bags, pairing them with professional intelligent bag-making equipment truly achieves a closed loop of "cost reduction, quality improvement, and efficiency enhancement." Today, we'll take you through two industry-leading bag-making machines—the Gachn Group AI Vision Inspection Valve-Grooved Bag Making Machine and the Gachn Group GM051 High-Speed Bagging and Coil-Grooved Machine—and see how they provide optimal solutions for diverse packaging needs!

 

Ⅰ.Valve Bag Production Upgrade: The Gachn Group AI Vision Inspection Bag Making Machine 3.0 delivers both efficiency and precision.

valve bag making machine

(Gachn group valve bag making machine working process diagram)

Valve bags, due to their strong sealing properties and high adaptability to automation, have become the preferred choice for industries such as cement, chemicals, and mineral powders. However, traditional production processes continue to plague businesses with low manual bag picking efficiency, high scrap rates, and difficult cost controls. Gachn Group's AI-powered visual inspection valve bag making machine 3.0 addresses these pain points with technological innovation.

 

Core technological highlights redefine valve bag production standards.

 

1. AI visual inspection replaces manual inspection.

The standard raw material visual inspection system uses high-precision cameras and AI algorithms to automatically identify defects such as holes, splices, and warp and weft deviations in the base fabric, as well as skewed corners, offset bottom stickers, and poor overlaps in finished bags, with a rejection rate as low as 0.05%. This eliminates one or two bag-picking workers per production line, completely resolving the industry challenges of "difficulty recruiting and inconsistent quality inspection."

2. Fully servo-controlled, delivering both speed and flexibility.

The machine boasts a stable operating speed of 120-130 bags per minute, far exceeding traditional equipment. It supports "one-click size change," easily switching between various sizes, including 380-910mm (woven bag width) and 80-200mm (valve port length), eliminating complex debugging and increasing flexibility in batch production. Visible cost reduction and efficiency gains.

Using technologies such as single-sided lamination and reduced overlap width, customers can save hundreds of thousands of yuan in material costs annually. A scrap rate as low as 0.1% minimizes raw material loss.

3. Worry-free after-sales service and continuous empowerment.

We provide on-site installation and commissioning, professional operator training, and free electronic control system upgrades within three years to ensure the equipment maintains industry-leading performance.

 

Applicable Applications: Sealing is essential in sectors ranging from building materials to chemicals.

Cutting&inserting&sewing&top hemming machine

(Gachn groupCutting&inserting&sewing&top hemming machine workflow diagram)

Preventing dust leakage in dusty building materials such as cement, gypsum powder, and putty powder.

Protecting against moisture and contamination in products requiring high sealing properties, such as fine chemical powders and pigments.

Suitable for automated filling lines for bulk powders such as mineral powder and coal powder.

 

Ⅱ.Speeding up loop bag production: The Gachn Group GM051 high-speed bagging and looping machine combines flexibility and efficiency.

Loop bags are known for their ease of operation and cost-effectiveness, making them widely used in grain, feed, and food industries. However, traditional production processes are plagued by fragmented processes, slow speeds, and frequent manual intervention, hindering large-scale production. Gachn Group's GM051 high-speed bagging and looping machine uses a fully automated process to efficiently transition from fabric roll to finished bag.

 

Core technology highlights make loop bag production more intelligent.

Fully automated processes reduce manual intervention. From outer bag unwinding, inner film wrapping, and bag tail sewing to loop forming, ultrasonic lip welding, and automatic stacking, the entire process is controlled by PLC and servo drive, eliminating the need for manual operation. A 10-inch touchscreen provides graphical control, making parameter adjustment simple and intuitive.

 

1. Continuous conveying process, increasing speed by 30%.

The innovative "mechanism follows the bag" design reduces bag start-up and stop times, achieving a stable operating speed of 30 bags/minute. The outer bag and inner film are precisely aligned (length error ≤ ±5mm), ensuring reliable and uniform welding and more consistent finished product quality.

 

2. Compatible with multiple specifications to meet diverse needs.

Supporting outer bag lengths of 650-1100mm, widths of 500-650mm, and inner film thicknesses of 0.015-0.05mm, it easily meets the packaging needs of diverse materials such as rice, beans, and feed. Compatible with both M-bags and flat bags for flexible switching.

 

3. Detailed quality and maximum durability.

Utilizing high-quality components such as German-imported Schneider servo motors and German KTR couplings, the frame base utilizes square tubes with a wall thickness of ≥6mm, and the main wall panels are ≥15mm thick, ensuring long-term stable operation. Safety features such as wire break detection and emergency stop protection ensure greater peace of mind during production.

 

Applicable scenarios: Flexible packaging needs for food and agriculture.

For household and wholesale packaging of foods such as rice, grains, and beans, the ring design allows for easy access.

For agricultural granular materials such as feed and seeds, the film and welding process provides moisture and dust resistance.

For industrial raw materials such as plastic granules, efficient mass production reduces packaging costs.

 

How to choose? Check your needs for the right fit.

If you're producing valve bags and require high speed, low scrap, and reduced labor, choose the Gachn Group AI Vision Inspection Bag Making Machine 3.0. It's particularly well-suited for large-scale, high-standard building materials and chemical companies.

If you're focused on loop bags and require flexible adaptation to multiple specifications and full process automation, choose the Gachn Group GM051 Slitting and Looping Machine. It's ideal for industries like food and agriculture, where ease of use is paramount.

Whether it's the efficient sealing of valve bags or the flexibility and practicality of loop bags, Gachn Group, driven by its mission of "Unlocking Key Technologies and Creating Customer Value," provides full-lifecycle support from equipment to service. Contact us for a consultation to receive customized bag-making solutions, making packaging production smarter and more worry-free!

 

阅读全文......

Gachn Group's new generation valve bag making machine Technological innovation leads a new era of efficient production.

In the valve bag making machine sector, Gachn Group's new generation FK008-III valve bag making machine, with its numerous innovative technologies and superior performance, has become an industry leader. It not only breaks through traditional limitations in key processes such as bag making, transfer, bag opening, and conveying, but also demonstrates significant advantages in technical parameters and equipment configuration, providing businesses with an efficient, stable, and cost-effective production experience

  • PP plastic valve bag making machine
  • PP plastic valve bag making machine
  • PP plastic valve bag making machine

 

Core Innovative Technologies Break Through Traditional Production Bottlenecks

Gachn Group's valve bag making machines feature innovative designs in several key mechanisms, effectively resolving numerous issues with traditional equipment.

In the bag transfer process, the Gachn Group utilizes a proprietary vacuum suction bag steering mechanism, enabling high-speed, vertical bag transfer for rapid and stable operation. Unlike the "claw-type" bag steering mechanisms used by other manufacturers, Gachn Group possesses its own core technology and intellectual property, avoiding patents held by renowned international equipment manufacturers and eliminating the risk of intellectual property infringement lawsuits.

The triangular bag opening mechanism is a further highlight, lacking consumable suction cups, significantly reducing ongoing maintenance costs. This mechanism utilizes a combination of negative pressure and a conveyor system to efficiently open the bag bottom while reducing noise and ensuring efficient and stable operation. Similarly, this proprietary core technology avoids international patents, eliminating the risk of intellectual property infringement lawsuits and providing peace of mind for manufacturers.

In terms of suction roller transfer, the bottom tape belt conveyors used by other valve bag making machines on the market are prone to bending, resulting in scrap. Furthermore, the higher the production speed, the more severe the kinking problem becomes. The belts also wear easily, making replacement difficult. Gachn Group's innovative suction roller conveyor mechanism is less prone to corner bending, significantly improving bag yields, enhancing equipment stability, and reducing production costs. This feature is unique to Gachn Group and is patented.

In addition, Gachn Group utilizes a professionally designed heat-sealing welding mechanism and unique technology, equipped with three hot air mechanisms, to ensure uniform air blowing and consistent dimensions. Servo-controlled switching of the air blow reversing axis allows for precise control of the welding on/off timing. Compared to other manufacturers' pneumatic cylinder control mechanisms, this system offers higher welding quality, precise adjustment of the air blow angle, and flexible adjustment of the heat seal width without requiring downtime, significantly enhancing production flexibility and efficiency.

 

Excellent Technical Parameters, Meeting Diverse Production Needs

The Gachn Group FK008-III valve bag making machine excels in bag making specifications and equipment parameters, adapting to diverse production needs.

It offers a wide range of bag specifications, with bag center length (L) ranging from 330-730 mm, bag width (W) from 300-620 mm, and bottom width (W1) from 80-120 mm, respectively. The valve opening length ranges from 80-200 mm.

The machine's specifications are equally impressive, with the main unit measuring 12.0 m (L) x 7.5 m (W) x 2.5 m (H), featuring a height adjustment mechanism at the bottom. The machine weighs approximately 17,000 kg. It utilizes a 3-phase, 380 Vac ±5%, 50 Hz, three-phase, five-wire system (CE standard), with an installed capacity of approximately 150 kW. The bag-making speed reaches a stable 130 bags/minute, with a maximum operating speed of 140 bags/minute.

Gachn Group's new-generation FK008-III valve bag bag-making machine integrates a visual inspection and waste removal system with core bag-making technology, creating a truly fully automated AI-powered closed-loop production system. Equipped with a 4K line-array infrared high-speed industrial camera and a black-and-white high-speed industrial camera, the visual inspection system accurately detects cosmetic defects in bags at a speed of 120 bags/minute. With a waste rejection rate of ≥96.5% and a false rejection rate of <0.15%, it enables real-time monitoring and intelligent screening of bag quality. Its detection logic is efficiently integrated with the core bag-making technology. When the visual system identifies a defective bag, a signal is instantly fed back to the bag-making unit's servo control system, triggering a cutting mechanism to precisely separate the defective bag. Simultaneously, the bag transfer unit's vacuum suction and dual servo drive systems immediately adjust the conveying rhythm to ensure that subsequent qualified bags are not affected.

 

Superior Equipment Configuration Ensures Stable and Efficient Operation.

PP plastic valve bag making machine

The Gachn Group FK008-III valve bag making machine is comprised of numerous high-quality components, all working together to ensure stable and efficient operation.

The machine features a comprehensive range of components, including 16 main components: a bag unwinder, micro-perforating device, unwinding traction device, bag-making device, and bag transfer device. The bag unwinder utilizes a passive unwinding mechanism, with the material unwinding driven by a traction motor. It is equipped with a magnetic powder brake, an air shaft, a swing arm for lifting the material, an end-of-roll alarm, and a floating tension bar, ensuring stable and reliable material unwinding and easy operation.

The micro-perforating device:utilizes a modular assembly system for micro-perforating needle rollers. Damage to any part requires only the corresponding module to be replaced, making it economical and cost-effective. The micro-perforation size adjustment mechanism utilizes a screw and handwheel design for easy adjustment. The unwinding traction device is independently controlled by a servo motor, and the clamp rollers are opened and closed by a manual valve-controlled cylinder, simplifying material threading.

The bag-making unit:includes mechanisms for pulling material, color mark alignment, and rear-end cutting. The color mark position is adjustable, and bag-making can be performed in two modes: color mark alignment and fixed-length. It also features a bag-ready detection function and manual bag-making functions. The bag-transferring unit utilizes a vacuum negative pressure system and dual servo segmented control to ensure stable, timely, and reliable bag movement. A photoelectric detection system generates an alarm and stops the bag-making section if transfer fails.

The bag-opening unit:includes an opening unit and a mouth-opening unit. The opening unit utilizes a separate servo conveyor combined with negative pressure blower control, while the mouth-opening unit is also controlled by a separate servo, ensuring stable and widest opening. The forming unit consists of a triangular forming unit and a belt conveyor. The triangular forming unit is efficient, stable, and has an adjustable width, while the belt conveyor prevents the opening from rebounding.

The welding unit:utilizes an ultra-high-temperature heating gun with adjustable temperature, equipped with thermocouple temperature detection and a power-off protection device. A servo-controlled steering axis controls the airflow direction, and the nozzle width is adjustable. The folding unit uses multiple folding plates to create a fixed folding path, and the folding width is adjustable via a lead screw. The conveyor system for valve and bottom stickers incorporates multiple mechanisms, ensuring simple and reliable unwinding. It is equipped with a web-correcting device, and the cutter roller and material transfer mechanisms are independently controlled by servo motors, ensuring accurate cutting length and welding position. The finished product stacking conveyor features counting and stacking functions, with adjustable parameters. Protective devices comply with relevant regulations to ensure production safety. The visual inspection and waste removal system, electrical system, and pneumatic system are also well-equipped, providing strong support for equipment operation.

In addition, the equipment's electrical configuration and mechanical components are imported, high-quality international brands, such as Schneider and Weidmüller for low-voltage power distribution, German Schneider for PLC, servo, and touch screen, Panasonic for sensors, and Taiwan's Xinbao for servo planetary reducers, ensuring stable performance. All machined parts are surface-treated, exposed parts are made of high-quality materials, and transmission components are made of special steel that has undergone quenching and tempering treatment, ensuring equipment durability.

 

Comprehensive service and support ensure worry-free production.

Professional on-site technical training provides hands-on instruction on equipment installation and commissioning. After the equipment is installed and commissioned, we will dispatch experienced technicians to the customer's factory to provide face-to-face technical guidance. The training covers key points such as equipment operation procedures, parameter adjustment techniques, common fault diagnosis and repair methods. During the training, the customer is required to arrange for one to two technicians to participate to ensure that relevant personnel master all equipment operation and maintenance skills, laying a solid foundation for stable equipment operation.

Efficient remote team support for rapid response to needs. In addition to on-site services, Gachn group has also established a professional technical team to provide comprehensive remote after-sales service. Whether customers have questions about equipment operating parameter settings, troubleshoot unexpected minor problems, or require technical consultation during production, they can contact our remote service team by phone, video, or other means. Leveraging their in-depth knowledge of the equipment, the team will provide timely solutions and remotely assist in troubleshooting and resolving issues, minimizing production downtime caused by equipment issues and ensuring continuous production.

Gachn Group's new generation FK008-III valve bag making machine, with its innovative technology, superior performance, sophisticated configuration, and comprehensive service, provides valve bag manufacturers with an efficient, stable, and cost-effective solution, leading the industry to new heights of production. Choosing Gachn Group guarantees efficient production.

阅读全文......

The Hidden Treasure Inside Old Tires Rescuing Tiny Steel Wires

What really happens when your car tires wear out? While recycled rubber gets new life as playground surfaces or mulch, a hidden hero remains buried inside: ​hair-thin steel wires. Here’s how these tiny metal threads get a second chance!

Why Save the Wires?​​
Tires are more than just rubber. Steel wires woven into their structure provide strength and shape. These capillary wires (thinner than a pencil lead!) are pure, high-quality steel. Recycling them:

  • Saves raw iron ore mining
  • Uses 75% less energy than making new steel
  • Keeps tires out of landfills

But how do we extract wires trapped in rubber?

The Wire Rescue Mission: Three Simple Steps​

​Step 1: Shredding & Shaking​
Old tires are torn into small chunks. Powerful magnets grab larger steel fragments, but finer wires cling to rubber. Next stop: the steel spa!

​Step 2: The Heat Treatment​
Rubber-coated wires enter a special high-heat oven. At 250°C–400°C:

  • Rubber burns away cleanly
  • Steel wires emerge bare and ready
  • Harmful fumes are filtered for safety

​Step 3: Magnet Magic​
Strong magnets pull the freed wires from ash and dust. Air jets give them a final cleanup. Now pure and shiny, they’re bailed into metal cubes.

New Life for Old Wires​
These rescued steel bundles head to mills where they’re:

  • Melted into fresh steel ingots
  • Rolled into reinforcement bars
  • Used in construction, machinery, or even new tires

Why This Tiny Effort Matters​

  • ​Eco-Win: Recovering just 1 ton of tire steel saves 1.5 tons of iron ore and cuts CO₂ emissions drastically.
  • ​Economic Bonus: Steel wire recycling makes tire processing profitable—encouraging more recycling.
  • ​Everyday Impact: That bridge you cross or playground mat your kids use? Recycled tire steel and rubber are likely inside!

 

​The Bigger Picture​
Tire recycling isn’t just about rubber. Those nearly invisible wires prove that every scrap has value. With up to 70% of a tire’s steel recoverable, this quiet recycling hero helps build a greener world—one thread at a time.

Next time you replace tires, remember: you’re not discarding rubber. You’re returning steel to the cycle.

阅读全文......

How Automatic Box Packing Machines Improve Production Efficiency

In modern industrial production, automatic packaging equipment has become a key tool to improve production efficiency and reduce labor costs. As an important part of packaging automation, box packing machine (or called cartoning machines) are widely used in food, medicine, daily chemicals, electronics and other industries, and can efficiently complete product cartoning, sealing, coding and other processes.

 

Basic Working Principle

Box packing machine is an automatic packaging equipment, which is mainly used to load products into paper boxes or plastic boxes, and complete operations such as folding boxes, sealing, etc. Its workflow usually includes the following steps:

 

Automatic paper boxes feeding: The machine takes flat paper boxes from the storage slot and unfolds them into a state to be loaded.

Product transportation and positioning: The products are accurately fed into the box through a conveyor belt or a manipulator.

Cartoning and sealing: The machine automatically folds the lid and seals, and some models also perform hot melt glue sealing or tongue lock boxes.

cartoning processCartoning Process

 

According to the characteristics of the product, box packing machines can be divided into different types such as vertical box packing machines, horizontal box packing machines, and continuous box packing machines, which are suitable for the packaging needs of products of different shapes and sizes.

 

box types

Box Types

 

How Can Box Packing Machines Improve Production Efficiency?

1. Increase Packaging Speed & Reduce Manual Dependence

Manual packaging is limited by the operating speed of workers, and usually the working speed is only 5-10 boxes per minute, while the packing speed of automatic box packing machine can reach 60-300 boxes/minute (depending on the machine model), and the efficiency is increased several times or even dozens of times. For example, in the pharmaceutical industry, blister plate box packing machines can reach 200 boxes/minute to meet the needs of high-speed production. In the food industry, small products, such as biscuits and chocolates, can be packed in paper boxes at a speed of up to 300 boxes/minute.

 

Fully automatic box packing machines can operate continuously for 24 hours, unaffected by factors such as worker fatigue and shift changes, ensuring production stability.

 

2. Reduce Packaging Errors & Improve Product Consistency

Manual packaging is prone to problems such as wrong packaging, missing packaging, and loose sealing. Cartoning machines use photoelectric sensors, visual inspection systems and PLC control to ensure that products are correctly boxed to avoid manual problems. And the box is tightly sealed to avoid box opening during transportation. Labels and instructions can also be placed accurately. This not only reduces rework and scrap rates, but also improves customer satisfaction and reduces the risk of complaints.

 

3. Reduce Labor Costs & Optimize Production Processes

Traditional packaging lines require a large number of workers to perform operations such as boxing, sealing, and palletizing, while box packaging machines can achieve fully automatic or semi-automatic production, reducing labor demand. A fully automatic cartoning packing line only requires 1-2 people to monitor, while manual packaging may require 5-10 people. In the long run, the machine operating cost is lower than the labor cost, and the return on investment is high. In addition, the cartoning machine can be linked with bottle filling machines, pouch packing machines, labeling machines, case packing machines and other equipment to form a complete automatic packaging line, further improving overall efficiency.

 

4. Improve Packaging Quality & Enhance Brand Image

Through precise mechanical structure and intelligent control system, the box packing machine can ensure that the corners of each packaging box are flat, the seal is tight, and the appearance is neat, giving the product a high-end and unified visual effect. Stable packaging quality not only reduces the breakage rate during transportation, but also ensures that product information is clear and legible through a precise inkjet system. The machines meet the strict compliance requirements of industries such as medicine and food. This kind of professional packaging presentation can effectively enhance consumers’ recognition of product quality, shape the brand’s professional image, win more consumers’ favor and trust in a fiercely competitive market, and thus enhance the product’s added value and market competitiveness.

 

Future Development Trends

With the advancement of intelligent manufacturing and Industry 4.0, cartoning machines are developing in a smarter and more efficient direction:

 

1.AI visual inspection: automatically identify product defects and remove defective products.

2.Internet of Things (IoT) integration: real-time monitoring of equipment operation status and prediction of maintenance needs.

3.Cobot application: cooperate with manipulators to achieve more flexible cartoning solutions.

 

Conclusion

With the advancement of technology, box packing machines will play a more important role in intelligent manufacturing, helping companies achieve more efficient and flexible packaging production. For companies pursuing high efficiency and high quality, investing in automatic cartoning machines is an important strategy to enhance competitiveness.

 

If you're looking for a cost-effective and reliable box packing machine solution, feel free to contact Jason Machinery. We’re here to help you automate your success.

 

 

阅读全文......