dyyseo
Temperature Chamber

Maintenance methods for constant temperature and humidity test chambers

1. Dust adhering to the condenser can cause the high-pressure switch of the compressor to trip and issue false alarms. Therefore, dust attached to the cooling grid of the condenser can be removed with a vacuum cleaner every month, or by using a hard-bristled brush after turning on the machine, or by blowing it off with a high-pressure air nozzle.
2. The area around the machine and the ground at the bottom should be kept clean at all times to prevent a large amount of dust from being sucked into the unit or reducing equipment performance and causing accidents.
3. When opening or closing the door or taking samples from the test chamber, do not touch the sealing strip on the door.
4. The core of the constant temperature and humidity test chamber - the refrigeration system should be inspected once a year. Check for leaks in the copper tubes and at each joint and interface. If there are any, inform the manufacturer.
5. The humidifier and water tank should be cleaned frequently to avoid scaling and affecting steam emission. Clean them after each test. Timely descaling helps extend the lifespan of the humidification tube and ensures smooth water flow. When cleaning, use a copper brush and then rinse with water.
6. The distribution room should be cleaned and inspected more than once a year. Loose nodes can put the entire equipment in a dangerous working state, burn out components, cause fires, alarms, and endanger lives.
7. The dry and wet bulb wicks should be checked frequently. Replace them promptly if they become hard or dirty. It is recommended to replace them every three months.
8. Inspection and maintenance of the water circuit. The water pipes in the water circuit are prone to clogging and leakage. Regularly check for leaks or blockages. If found, remove them promptly or notify the manufacturer.

阅读全文......

Two reasons why the constant temperature and humidity test chamber does not refrigerate

One reason 1. Because the temperature of the constant temperature and humidity test chamber cannot be maintained, observe whether the refrigeration compressor can start when the test chamber is running, and whether the compressor can start when the environmental test equipment is running, indicating that the circuit from the main power supply to each compressor is normal and the electrical system has no problem.

2. There is no fault in the electrical system. Continue to check the refrigeration system. First, check whether the exhaust and suction pressure of the low temperature (R23) compressor of the two sets of refrigeration units are lower than the normal value, and whether the suction pressure is in the vacuum state, indicating that the refrigeration dose of the main refrigeration unit is insufficient.

3. Touch the exhaust pipe and suction pipe of the R23 compressor with your hand, and find that the temperature of the exhaust pipe is not high, and the temperature of the suction pipe is not low (no frost), which also indicates that the R23 refrigerant in the host is insufficient.

Another reason: 1. The cause of the failure has not been determined, and further confirmation is made in combination with the control process of the constant temperature and humidity test chamber. The test chamber has two sets of refrigeration units.

One is the main unit, and the other is the auxiliary unit. When the cooling rate is high, both units operate simultaneously at the beginning of the temperature maintenance phase. Once the temperature stabilizes, the auxiliary unit stops, and the main unit maintains the temperature. If the R23 refrigerant leaks from the main unit, its cooling efficiency will be significantly reduced. During the cooling process, both units operate simultaneously, ensuring stable temperatures and a gradual decrease in cooling rate. In the insulation phase, if the auxiliary unit stops, the main unit loses its cooling function, causing the air inside the test chamber to rise slowly. When the temperature reaches a certain level, the control system activates the auxiliary unit to cool down, after which the auxiliary unit stops again. The cause of the production failure has been identified as a low-temperature (R23) refrigerant leak from the main unit. Upon checking the refrigeration system for leaks, a crack was found on the valve stem of the hot gas bypass solenoid valve, measuring about 1cm in length. After replacing the solenoid valve and recharging the system with refrigerant, the system returned to normal operation. This analysis shows that the fault diagnosis follows a step-by-step approach, starting from the 'external' aspects and moving inward, then focusing on 'electricity' and finally on 'cooling.' A thorough understanding of the test chamber's principles and operational processes is essential for accurate fault diagnosis.

environment test chamber

阅读全文......

What are the delivery standards of Lab Companion?

(1) Equipment installation and commissioning

On-site service: technical personnel will deliver the goods free of charge and complete the mechanical assembly, electrical wiring and debugging. The debugging parameters shall meet the temperature and humidity, salt spray deposition amount and other indicators in the customer's technical agreement.

Acceptance criteria: provide a third-party measurement report, and unqualified equipment shall be returned or replaced directly. For example, the rain test box shall pass 100% acceptance.

(2) Customer training system

Operation training: covers equipment start and stop, program setting and daily maintenance, customized for different user scenarios such as quality inspection institutions and automobile enterprises.

Deep maintenance training: including fault diagnosis (such as troubleshooting of humidity system in high and low temperature and humidity test chamber) and spare parts replacement to improve customers' independent maintenance ability.

(3) Technical support and response

Instant response: respond to repair demand within 15 minutes, and solve routine faults within 48 hours (negotiate with remote areas).

Remote diagnosis: through video guidance or remote access software, quickly locate the problem (such as abnormal dust concentration in the sand test chamber).

(4) Spare parts supply and maintenance

Make spare parts plan, give priority to the supply of wear and tear parts from cooperative units (such as China Railway Inspection and Certification Center, China Electronics Technology Group), and reduce downtime.

Non-manual damage is free of charge during the warranty period, and paid services are provided after the warranty period with transparent charges.

the delivery standards of Guangdong Hongzhan

阅读全文......

What are the performance of high and low temperature shock test chamber?

  The high and low-temperature impact test chamber is designed for reliability testing of industrial products under both high and low temperatures. It is used to evaluate the performance of components and materials in industries such as electronics, automotive, aerospace, shipbuilding, and weaponry, as well as in higher education and research institutions, under alternating cycles of high and low temperatures. The main features include:

  1. Excellent Conductivity: The alloy cable, made by adding rare earth elements and copper, iron, silicon, and other elements from China, undergoes special processing to achieve a conductivity 62% higher than that of copper. After this process, the cross-sectional area of the alloy conductor is increased by 1.28 to 1.5 times, making the cable's current-carrying capacity and voltage drop comparable to those of copper cables, effectively replacing copper with new alloy materials.
  2. Superior Mechanical Properties: Compared to copper cables, the rebound performance of the high and low-temperature impact test chamber is 40% lower, and its flexibility is 25% higher. It also has excellent bending properties, allowing for a much smaller installation radius compared to copper cables, making it easier to install and connect terminals. The special formulation and heat treatment process significantly reduce the creep of the conductor under heat and pressure, ensuring that the electrical connections of the alloy cable are as stable as those of copper cables.
  3. Reliable Safety Performance: The high and low-temperature impact test chamber has been rigorously certified by UL in the United States and has been in use for 40 years in countries like the United States, Canada, and Mexico without any issues. Based on advanced American technology, the test chamber has been tested and inspected by multiple domestic institutions, ensuring its reliable safety.
  4. Economic Performance Savings: When achieving the same electrical performance, the direct procurement cost of high and low-temperature impact test chambers is 20% to 30% lower than that of copper cables. Since alloy cables are only half the weight of copper cables and have excellent mechanical properties, using alloy cables can reduce transportation and installation costs by more than 20% in general buildings and over 40% in large-span buildings. Using high and low-temperature impact test chambers will have an immeasurable impact on building a resource-efficient society.
  5. Excellent Anti-corrosion Performance: When exposed to air at high temperatures, alloy cables immediately form a dense oxide layer that is highly resistant to various forms of corrosion, making them suitable for harsh environments. Additionally, the optimized internal structure of the alloy conductor and the use of silane cross-linked polyethylene insulation material extend the service life of alloy cables by more than 10 years compared to copper cables.                      high and low temperature shock test chamber
阅读全文......

What should be paid attention to in summer when using the ice water impact test chamber?

 

When the Guangdong Hongzhan ice water impact test chamber is used in summer, the following matters should be paid special attention to to ensure the stable operation of the equipment and the accuracy of the test results:

1. Environment and heat dissipation management

  Enhance ventilation and heat dissipation High temperature in summer is easy to lead to the decrease of equipment heat dissipation efficiency. Ensure that at least 10cm space is reserved around the equipment to promote air circulation. If the equipment adopts air cooling system, the condenser surface dust should be cleaned regularly to prevent poor heat dissipation and overheating of the compressor.Control the environmental temperature and humidity. Avoid placing the equipment in the direct sunlight area. It is recommended that the laboratory temperature be kept at 25±5℃ and the humidity be lower than 85%. High temperature and high humidity environment may accelerate the accumulation of frost or condensation water on the equipment, so it is necessary to increase the dehumidification measures.

2. Refrigeration system maintenance

  Water quality and tank management Bacteria are easy to breed in summer, so use deionized water or pure water to avoid hard water scaling and blocking pipes. It is recommended to change the tank water every 3 days, and empty and clean the tank before long-term disuse.Refrigeration efficiency monitoring High temperature environment may lead to overload operation of the refrigeration system. The compressor oil condition should be checked regularly to ensure sufficient refrigerant. If the water temperature exceeds the set value (such as 0~4℃), the machine should be stopped immediately for troubleshooting.

3. Frosting and defrosting treatment

  Prevent frost aggravation When the humidity is high in summer, the frost rate inside the equipment may accelerate. It is recommended to perform a manual defrosting process after 10 cycles: set the temperature to 30℃ and keep it for 30 minutes, and then drain water to clean the ice crystals on the evaporator surface.

Optimize the test interval to avoid continuous long-term low temperature testing. It is recommended to reserve 15 minutes of buffer time between high temperature (e.g., 160℃) and ice water shock cycle to reduce the impact of thermal stress on the equipment.

4. Adjustment of operation specifications

  Parameter setting optimization According to the characteristics of the summer environment, the normal temperature recovery stage time can be shortened appropriately (the reference standard is to complete the temperature switch within 20 seconds), but it must ensure that it meets the requirements of GB/T 2423.1 or ISO16750-4 standards.Safety protection should be strengthened. Anti-freezing gloves and goggles should be worn during operation to avoid the adhesion of hands and low-temperature parts caused by sweating. Before opening the door after high temperature test, the temperature inside the box should be confirmed to be below 50℃ to prevent scalding from hot steam.

5. Emergency and long-term shutdown preparation

  Fault response If the equipment has E01 (temperature out of tolerance) or E02 (water level abnormal) alarm, you should immediately cut off the power supply and contact the technical support of the manufacturer. Do not disassemble the refrigeration pipeline by yourself.Long-term protection When not used for more than 7 days, the water tank should be emptied, power should be cut off and dust cover should be covered. At the same time, power should be on for 1 hour every half a month to keep the circuit board dry.

environmental simulation chamber

  Through the above measures, the impact of high temperature and humidity environment in summer on the ice water shock test chamber can be effectively reduced to ensure the reliability of test data and the service life of the equipment. The specific operation details should be adjusted according to the equipment manual and actual working conditions.

阅读全文......

What should I do if the high and low temperature test chamber has problems?

High and low temperature test chamber may encounter a variety of problems in the process of use, the following is a summary of potential faults and their causes from different perspectives:

1. Core system failure

Temperature out of control

Reason: PID control parameters are out of balance, ambient temperature exceeds the design range of the equipment, multi-zone temperature interference.

Case: In a special environment workshop, the external high temperature causes the refrigeration system to overload, resulting in temperature drift.

Humidity is abnormal

Reason: poor water quality of humidification leads to scaling and nozzle blockage, failure of ultrasonic humidifier piezoelectric sheet, and incomplete regeneration of dehumidification desiccant.

Special phenomenon: reverse condensation occurs during high humidity test, resulting in the actual humidity in the box being lower than the set value.

2. Mechanical and structural problems

Air flow is disorganized

Performance: There is a temperature gradient of more than 3℃ in the sample area.

Root cause: the customized sample rack changed the original design air duct and the accumulation of dirt on the centrifugal fan blade led to the destruction of dynamic balance.

 sealing failure

New failure: the magnetic force of electromagnetic sealing door decreases at low temperature, and the silicone sealing strip becomes brittle and cracks after-70℃.

3. Electrical and control system

Intelligent control failure

Software level: After firmware upgrade, the temperature dead zone setting error occurs and the historical data overflow causes the program to crash.

Hardware level: SSR solid state relay breakdown causes continuous heating and bus communication is subjected to inverter electromagnetic interference.

Security protection vulnerabilities

Hidden dangers: the synchronous failure of the triple temperature protection relay and the false alarm caused by the expiration of the refrigerant detector calibration.

4. Challenges of special working conditions

Specific temperature shock

Problem: -40℃ to +150℃ rapid conversion of the evaporator weld stress cracking, thermal expansion coefficient difference resulting in the failure of the observation window seal.

Long-term operation attenuation

Performance degradation: after 2000 hours of continuous operation, the compressor valve plate wear leads to a decrease of 15% in refrigeration capacity and drift of ceramic heating tube resistance value.

5. Environmental and maintenance impact

Infrastructure adaptation

Case: The power oscillation of PTC heater caused by the fluctuation of power supply voltage and the water hammer effect of cooling water system damaged the plate heat exchanger.

Preventive maintenance blind spots

Lesson: Ignoring the positive pressure of the box leads to water entering the bearing chamber and biofilm growth and blockage in the condensate discharge pipe.

6. Pain points of emerging technologies

New refrigerant application

Challenges: system oil compatibility problems after R448A replaces R404A, and high pressure sealing problems of subcritical CO₂ refrigeration systems.

IoT integration risks

Fault: The remote control protocol is maliciously attacked, resulting in program tampering and cloud storage failure, resulting in the loss of test evidence chain.

Strategy recommendations

Intelligent diagnosis: configure vibration analyzer to predict the failure of compressor bearing, and use infrared thermal imager to scan the electrical connection points regularly.

Reliability design: key components such as evaporator are made of SUS316L stainless steel to improve corrosion resistance, and redundant temperature control modules are added to the control system.

Maintenance innovation: implement a dynamic maintenance plan based on operating hours, and establish an annual refrigerant purity testing system。

The solutions to these problems need to be analyzed in combination with the specific model of the equipment, the use environment and the maintenance history. It is recommended to establish a collaborative maintenance mechanism including the OEM of the equipment, third-party testing institutions and user technical teams. For key test items, it is recommended to configure a dual-machine hot standby system to ensure the continuity of testing.

 

阅读全文......

key points of choosing high and low temperature test chamber

Eight key points of choosing high and low temperature test chamber:

1.No matter whether it is selected for high and low temperature test chamber or other test equipment, it should meet the temperature conditions specified in the test requirements;

2.To ensure the uniformity of temperature in the test chamber, forced air circulation or non-forced air circulation mode can be selected according to the heat dissipation of samples;

3.The heating or cooling system of the high and low temperature test chamber shall have no effect on the samples;

4.The test chamber should be convenient for the relevant sample rack to place samples, and the sample rack will not change its mechanical properties due to high and low temperature changes;

5. High and low temperature test chamber should have protective measures. For example: there are observation window and lighting, power disconnection, over-temperature protection, various alarm devices;

6. Whether there is remote monitoring function according to customer requirements;

7. The test chamber must be equipped with automatic counter, indicator light and recording equipment, automatic shutdown and other instrument devices when carrying out the cyclic test, and it must have good recording and display functions;

8.According to the sample temperature, there are two measurement methods: upper wind and lower wind sensor temperature. The position and control mode of temperature and humidity control sensor in the high and low temperature test chamber can be selected according to the customer's product test requirements to select the appropriate equipment.

environmental test chambers manufacturers

 

阅读全文......